Abies nebrodensis
Sicilian fir

Sicilian fir (Abies nebrodensis) is a critically endangered conifer species endemic to northern Sicily, where it is found particularly the Madonie Regional Natural Park. The relict population of Sicilian fir occupies a very restricted range of roughly 84 hectares, growing in limestone soils at an altitude of 1 500 m above sea level and reaching up to 15 m in height (Frascella et al., 2022).

The tree is characterized by a slender, conical shape with dense, dark-green needles. In the past it was very widely used because the wood is particularly elastic and durable, making it valued in construction. Its popularity contributed to the near extinction of the tree and the tree now has minimal commercial use, making its restoration difficult. Conservation efforts focus primarily on protecting its existing habitat and increasing its population through cultivation and reintroduction projects.

in situ genetic conservation unit
ex situ genetic conservation unit
Map elements
Download the distribution map
About map elements

To learn more about the map elements, please download the "Pan-European strategy for genetic conservation of forest trees"

Acknowledgements

This distribution map has been developed by the European Commission Joint Research Centre (partly based on the EUFORGEN map) and released under Creative Commons Attribution 4.0 International (CC-BY 4.0)


Caudullo, G., Welk, E., San-Miguel-Ayanz, J., 2017. Chorological maps for the main European woody species. Data in Brief 12, 662-666. DOI: https://doi.org/10.1016/j.dib.2017.05.007

The following experts have contributed to the development of the EUFORGEN distribution maps:

Fazia Krouchi (Algeria), Hasmik Ghalachyan (Armenia), Thomas Geburek (Austria), Berthold Heinze (Austria), Rudi Litschauer (Austria), Rudolf Litschauer (Austria), Michael Mengl (Austria), Ferdinand Müller (Austria), Franz Starlinger (Austria), Valida Ali-zade (Azerbaijan), Vahid Djalal Hajiyev (Azerbaijan), Karen Cox (Belgium), Bart De Cuyper (Belgium), Olivier Desteucq (Belgium), Patrick Mertens (Belgium), Jos Van Slycken (Belgium), An Vanden Broeck (Belgium), Kristine Vander Mijnsbrugge (Belgium), Dalibor Ballian (Bosnia and Herzegovina), Alexander H. Alexandrov (Bulgaria), Alexander Delkov (Bulgaria), Ivanova Denitsa Pandeva (Bulgaria), Peter Zhelev Stoyanov (Bulgaria), Joso Gracan (Croatia), Marilena Idzojtic (Croatia), Mladen Ivankovic (Croatia), Željka Ivanović (Croatia), Davorin Kajba (Croatia), Hrvoje Marjanovic (Croatia), Sanja Peric (Croatia), Andreas Christou (Cyprus), Xenophon Hadjikyriacou (Cyprus), Václav Buriánek (Czech Republic), Jan Chládek (Czech Republic), Josef Frýdl (Czech Republic), Petr Novotný (Czech Republic), Martin Slovacek (Czech Republic), Zdenek Špišek (Czech Republic), Karel Vancura (Czech Republic), Ulrik Bräuner (Denmark), Bjerne Ditlevsen (Denmark), Jon Kehlet Hansen (Denmark), Jan Svejgaard Jensen (Denmark), Kalev Jðgiste (Estonia), Tiit Maaten (Estonia), Raul Pihu (Estonia), Ülo Tamm (Estonia), Arvo Tullus (Estonia), Aivo Vares (Estonia), Teijo Nikkanen (Finland), Sanna Paanukoski (Finland), Mari Rusanen (Finland), Pekka Vakkari (Finland), Leena Yrjänä (Finland), Daniel Cambon (France), Eric Collin (France), Alexis Ducousso (France), Bruno Fady (France), François Lefèvre (France), Brigitte Musch (France), Sylvie Oddou-Muratorio (France), Luc E. Pâques (France), Julien Saudubray (France), Marc Villar (France), Vlatko Andonovski (FYR Macedonia), Dragi Pop-Stojanov (FYR Macedonia), Merab Machavariani (Georgia), Irina Tvauri (Georgia), Alexander Urushadze (Georgia), Bernd Degen (Germany), Jochen Kleinschmit (Germany), Armin König (Germany), Armin König (Germany), Volker Schneck (Germany), Richard Stephan (Germany), H. H. Kausch-Blecken Von Schmeling (Germany), Georg von Wühlisch (Germany), Iris Wagner (Germany), Heino Wolf (Germany), Paraskevi Alizoti (Greece), Filippos Aravanopoulos (Greece), Andreas Drouzas (Greece), Despina Paitaridou (Greece), Aristotelis C. Papageorgiou (Greece), Kostas Thanos (Greece), Sándor Bordács (Hungary), Csaba Mátyás (Hungary), László Nagy (Hungary), Thröstur Eysteinsson (Iceland), Adalsteinn Sigurgeirsson (Iceland), Halldór Sverrisson (Iceland), John Fennessy (Ireland), Ellen O'Connor (Ireland), Fulvio Ducci (Italy), Silvia Fineschi (Italy), Bartolomeo Schirone (Italy), Marco Cosimo Simeone (Italy), Giovanni Giuseppe Vendramin (Italy), Lorenzo Vietto (Italy), Janis Birgelis (Latvia), Virgilijus Baliuckas (Lithuania), Kestutis Cesnavicius (Lithuania), Darius Danusevicius (Lithuania), Valmantas Kundrotas (Lithuania), Alfas Pliûra (Lithuania), Darius Raudonius (Lithuania), Robert du Fays (Luxembourg), Myriam Heuertz (Luxembourg), Claude Parini (Luxembourg), Fred Trossen (Luxembourg), Frank Wolter (Luxembourg), Joseph Buhagiar (Malta), Eman Calleja (Malta), Ion Palancean (Moldova), Dragos Postolache (Moldova), Gheorghe Postolache (Moldova), Hassan Sbay (Morocco), Tor Myking (Norway), Tore Skrøppa (Norway), Anna Gugala (Poland), Jan Kowalczyk (Poland), Czeslaw Koziol (Poland), Jan Matras (Poland), Zbigniew Sobierajski (Poland), Maria Helena Almeida (Portugal), Filipe Costa e Silva (Portugal), Luís Reis (Portugal), Maria Carolina Varela (Portugal), Ioan Blada (Romania), Alexandru-Lucian Curtu (Romania), Lucian Dinca (Romania), Georgeta Mihai (Romania), Mihai Olaru (Romania), Gheorghe Parnuta (Romania), Natalia Demidova (Russian Federation), Mikhail V. Pridnya (Russian Federation), Andrey Prokazin (Russian Federation), Srdjan Bojovic (Serbia) , Vasilije Isajev (Serbia), Saša Orlovic (Serbia), Rudolf Bruchánik (Slovakia), Roman Longauer (Slovakia), Ladislav Paule (Slovakia), Gregor Bozič (Slovenia), Robert Brus (Slovenia), Katarina Celič (Slovenia), Hojka Kraigher (Slovenia), Andrej Verlič (Slovenia), Marjana Westergren (Slovenia), Ricardo Alía (Spain), Josefa Fernández-López (Spain), Luis Gil Sanchez (Spain), Pablo Gonzalez Goicoechea (Spain), Santiago C. González-Martínez (Spain), Sonia Martin Albertos (Spain), Eduardo Notivol Paino (Spain), María Arantxa Prada (Spain), Alvaro Soto de Viana (Spain), Lennart Ackzell (Sweden), Jonas Bergquist (Sweden), Sanna Black-Samuelsson (Sweden), Jonas Cedergren (Sweden), Gösta Eriksson (Sweden), Markus Bolliger (Switzerland), Felix Gugerli (Switzerland), Rolf Holderegger (Switzerland), Peter Rotach (Switzerland), Marcus Ulber (Switzerland), Sven M.G. de Vries (The Netherlands), Khouja Mohamed Larbi (Tunisia), Murat Alan (Turkey), Gaye Kandemir (Turkey), Gursel Karagöz (Turkey), Zeki Kaya (Turkey), Hasan Özer (Turkey), Hacer Semerci (Turkey), Ferit Toplu (Turkey), Mykola M. Vedmid (Ukraine), Roman T. Volosyanchuk (Ukraine), Stuart A'Hara (United Kingdom), Joan Cottrell (United Kingdom), Colin Edwards (United Kingdom), Michael Frankis (United Kingdom), Jason Hubert (United Kingdom), Karen Russell (United Kingdom), C.J.A. Samuel (United Kingdom).
 

Status of Abies nebrodensis conservation in Europe

Despite its small population, Sicilian fir has high genetic diversity (Alizoti et al., 2011). It has a high level of polymorphism and is differentiated from other pine species and has a population structure that would be expected for an outcrossing perennial species, even with its very restricted distribution (Conte and Cristofolini, 2003). Individuals in the surviving population have a high genetic distance among them; however, many of the older trees are related to one another and much of the natural regeneration is the result of self-fertilization (Frascella et al., 2022).

 

The bibliographic review was conducted by James Chaplin of the EUFORGEN Secretariat in August 2024.

Interspecific taxa dynamics

The origins of Sicilian fir are unclear as it shares morphological characteristics with silver fir (Abies alba), Greek fir (Abies cephalonica), and Algerian fir (Abies numidica) (Frascella et al., 2022). However, specific phenotypic characteristics, such as its smaller size and non-pectinate stiff leaves, differentiate Sicilian fir from other taxa (Frascella et al., 2022). The species appears to have intermixed with other fir (Abies) species, suggesting hybridization between silver fir and Algerian fir during postglacial periods (Conte and Cristofolini, 2003; Frascella et al., 2022). However Sicilian fir is in a distinct genetic group (Alizoti et al., 2011).

 

The bibliographic review was conducted by James Chaplin of the EUFORGEN Secretariat in August 2024.

Threats

As a result of extensive logging and erosion, only around 30 mature trees of Sicilian fir currently exist. As such, it is considered a critically endangered species, as roughly 500 mature trees would be needed to ensure a long-term viable population (Alizoti et al., 2011; Frascella et al., 2022). Hybridization with other fir trees is also a risk to its survival (Frascella et al., 2022). The natural population suffer from high levels of inbreeding, which could affect the evolutionary potential of the species (Frascella et al., 2022). Grazing by wild boar and fallow deer is also a threat to the surviving natural Sicilian fir population (Frascella et al., 2022). Climate change may affect Sicilian fir’s seed production, natural regeneration, and recruitment, and increase the risks from insects and pathogens, presenting a challenge for conservation efforts (Alizoti et al., 2011). Despite the harsh environment that Sicilian fir grows in, the health status of the natural population is not particularly poor, allowing for breeding and seed collection (Frascella et al., 2022).

Mangement

Sicilian fir is conserved in the Madonie Regional Park in Sicily; however, soil degradation makes reinforcement of the species difficult (Alizoti et al., 2011). There are also some 3 000 specimens currently cultivated and conserved in ex situ botanical gardens, seed orchards, and specialized arboretums around Italy using grafts from the 30 remaining individuals (Alizoti et al., 2011). Individuals held within the clonal orchards have high genetic variability, meaning they could be used in dynamic ex situ conservation and/or assisted migration (De Rogatis et al., 2023). Experimental plantations of Sicilian fir seedlings have taken place, and existing populations are protected to reduce soil erosion and encourage natural regeneration (Frascella et al., 2022). Genetic rescue also presents a management approach to support existing Sicilian fir populations and maintain their evolutionary potential (Frascella et al., 2022).

 

The bibliographic review was conducted by James Chaplin of the EUFORGEN Secretariat in August 2024.

Genetic Characterisation of Abies nebrodensis and its GCUs

Availability of FRM

FOREMATIS

EUFORGEN’s publications

Technical guidelines for genetic conservation and use

Abies spp - Technical guidelines for genetic conservation and use for Mediterranean firs

Publication Year: 2011
Author: Alizoti, P.G. ; Fady, B.; Prada, M.A.; Vendramin, G.G.

Due to the threats, endemism and geographically scattered distribution, the conservation of Mediterranean firs and their genetic resources is a major challenge.

The genetic resources of the firs are currently conserved in various protected areas that have rarely been established for this purpose. Due to their evolutionary history and specific adaptation, the fir forests harbour unique genetic resources that are important beyond the Mediterranean. Thus, the establishment of conservation units for the firs that meet pan-European minimum requirements for dynamic gene conservation is of crucial importance.

At present, several of the species and their genetic resources are protected either in situ (national parks, nature reserves and gene conservation units) or ex situ (conservation seed orchards and stands). The critically endangered A. nebrodensis is conserved in situ in the Madonie Regional Park in Sicily, but the reinforcement of the species has been problematic mainly due to soil degradation in its natural habitat. A. nebrodensis is also conserved ex situ in a seed orchard (with grafts of the 29 remaining individuals of the species) in Arezzo, in botanical gardens (40 000 plants in the Botanical Garden of Palermo), arboreta and in private properties in the Madonie Mountains close to the natural habitat. A. borisiiregis and A. cephalonica are protected in situ in various protected areas in Greece. Genetic material, representing almost the whole natural distribution of the fir species, is included in provenance trials established in Greece and France. A. cilicica is protected in national parks, nature reserves and seed stands in ten areas in Turkey and in Lebanon while in Syria it is considered as an endangered species. A. equi-trojani is conserved in situ in the Kazdagi Goknari nature reserve in Turkey. A. nordmanniana is also covered by protected areas in Turkey and several provenances are growing ex situ in test sites, plantations and arboreta in Denmark and France. The A. pinsapo forests are included in three protected areas in Spain. A. numidica is protected in the Djebel Barbor nature reserve located in the Petite Kabylia Mountain range of Algeria and the same provenance is reportedly also conserved in ex situ stands. At present A. marocana is conserved in a nature reserve in Morocco and seven ex situ stands have also been established for the species.

Climate change will have an impact on the current in situ conservation efforts but it is difficult to predict its effect on seed production, natural regeneration and recruitment of the firs as well as on the risks from insects and pathogens. The dynamic gene conservation units should be monitored in order to ensure that the populations are not seriously affected and that they retain their evolutionary potential and regenerate naturally. Management of the units should aim mainly at assisting natural regeneration and when this is not possible, the area should be artificially regenerated with local genetic material. Management of natural forests should also safeguard genetic resources by allowing natural selection to occur on regeneration in a variety of situations. Ex situ conservation efforts should focus on small populations that have an endangered status, insufficient seed production or unsuccessful pollination in their natural environment. This approach is useful especially in case of rare species or species with limited or scattered distribution as ex situ stands with a sufficient number of genotypes form new interbreeding populations that will produce seeds with a potentially high genetic diversity.

Mediterranean firs offers an opportunity to tackle the predicted forest decline in southern Europe as a result of climate change. A. nordmanniana has already been used for reforestation in Europe. Other Mediterranean firs (particularly A. cephalonica, A. bornmuelleriana and A. cilicica) are far less water demanding and could represent an alternative for silver fir (A. alba) in Europe. Fir provenance tests in the Mediterranean include material that has demonstrated good growth, adaptation to drought and late bud burst in spring. Such provenances of Mediterranean firs could be of interest for the European forestry.

Due to the threats, endemism and geographically scattered distribution, the conservation of Mediterranean firs and their genetic resources is a major challenge.

The genetic resources of the firs are currently conserved in various protected areas that have rarely been established for this purpose. Due to their evolutionary history and specific adaptation, the fir forests harbour...

Download

Related publications

Contacts of experts

NA

Further reading

N/A

References

Alizoti, P.G., Fady, B., Prada, M.A., and Vendramin, G.G. 2011. EUFORGEN Technical Guidelines for genetic conservation and use of Mediterranean firs (Abies spp.). Rome, Bioversity International. 6 pp.

Conte, L. and Cristofolini, G. 2003. Assessment of RAPD variation in Abies nebrodensis (Lojac.) Mattei (Pinaceae) using haploid tissue analysis. Israel Journal of Plant Sciences, 51(3): 199–206.

De Rogatis, A., Ducci, F., Guerri, S., Teani, A., and Proietti, R. 2023. Genotyping ex situ trees of Abies nebrodensis translocated from the original Sicilian population to enrich the gene pool. Journal of Forestry Research, 34(4): 1095–1106.

Frascella, A., Della Rocca, G., Barberini, S., Emiliani, G., Secci, S., Lambardi, M., Benelli, C., Tarraf, W., Izgu, T., Schicchi, R., and Germanà, M.A. 2022. Innovative in situ and ex situ conservation strategies of the Madonie fir Abies nebrodensis. Sustainability, 14(19): 12643. https://doi.org/10.3390/su141912643